196 research outputs found

    Observing transiting planets with JWST -- Prime targets and their synthetic spectral observations

    Full text link
    The James Webb Space Telescope will enable astronomers to obtain exoplanet spectra of unprecedented precision. Especially the MIRI instrument may shed light on the nature of the cloud particles obscuring planetary transmission spectra in the optical and near-infrared. We provide self-consistent atmospheric models and synthetic JWST observations for prime exoplanet targets in order to identify spectral regions of interest and estimate the number of transits needed to distinguish between model setups. We select targets which span a wide range in planetary temperature and surface gravity, ranging from super-Earths to giant planets, and have a high expected SNR. For all targets we vary the enrichment, C/O ratio, presence of optical absorbers (TiO/VO) and cloud treatment. We calculate atmospheric structures and emission and transmission spectra for all targets and use a radiometric model to obtain simulated observations. We analyze JWST's ability to distinguish between various scenarios. We find that in very cloudy planets such as GJ 1214b less than 10 transits with NIRSpec may be enough to reveal molecular features. Further, the presence of small silicate grains in atmospheres of hot Jupiters may be detectable with a single JWST MIRI transit. For a more detailed characterization of such particles less than 10 transits are necessary. Finally, we find that some of the hottest hot Jupiters are well fitted by models which neglect the redistribution of the insolation and harbor inversions, and that 1-4 eclipse measurements with NIRSpec are needed to distinguish between the inversion models. Wet thus demonstrate the capabilities of JWST for solving some of the most intriguing puzzles in current exoplanet atmospheric research. Further, by publishing all models calculated for this study we enable the community to carry out similar or retrieval analyses for all planets included in our target list.Comment: 24 pages, 7 figures, accepted for publication in A&

    Submillimetre/TeraHertz Astronomy at Dome C with CEA filled bolometer array

    Get PDF
    Submillimetre/TeraHertz (e.g. 200, 350, 450 microns) astronomy is the prime technique to unveil the birth and early evolution of a broad range of astrophysical objects. A major obstacle to carry out submm observations from ground is the atmosphere. Preliminary site testing and atmospheric transmission models tend to demonstrate that Dome C could offer the best conditions on Earth for submm/THz astronomy. The CAMISTIC project aims to install a filled bolometer-array camera with 16x16 pixels on IRAIT at Dome C and explore the 200-μ\mum windows for potential ground-based observations.Comment: 6 page

    Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. II. The environment of the companion star

    Get PDF
    Context: The INTEGRAL mission has led to the discovery of a new type of supergiant X-ray binaries (SGXBs), whose physical properties differ from those of previously known SGXBs. Those sources are in the course of being unveiled by means of multi-wavelength X-rays, optical, near- and mid-infrared observations, and two classes are appearing. The first class consists of obscured persistent SGXBs and the second is populated by the so-called supergiant fast X-ray transients (SFXTs). Aims: We report here mid-infrared (MIR) observations of the companion stars of twelve SGXBs from these two classes in order to assess the contribution of the star and the material enshrouding the system to the total emission.} Methods: We used data from observations we carried out at ESO/VLT with VISIR, as well as archival and published data, to perform broad-band spectral energy distributions of the companion stars and fitted them with a combination of two black bodies representing the star and a MIR excess due to the absorbing material enshrouding the star, if there was any. Results: We detect a MIR excess in the emission of IGR J16318-4848, IGR J16358-4726, and perhaps IGR J16195-4945. The other sources do not exhibit any MIR excess even when the intrinsic absorption is very high. (abridged)Comment: A&A in press, The official date of acceptance is 25/01/2008, 17 pages, 4 figures, 9 tables. New version with english language editing required by editor, note added in proo

    Hydrogenated atmospheres of lava planets: atmospheric structure and emission spectra

    Full text link
    Hot rocky super-Earths are thought to be sufficiently irradiated by their host star to melt their surface and thus allow for long-lasting magma oceans. Some processes have been proposed for such planets to have retained primordial hydrogen captured during their formation while moving inward in the planetary system. The new generation of space telescopes such as the JWST may provide observations precise enough to characterize the atmospheres and perhaps the interiors of such exoplanets. We use a vaporization model that calculates the gas-liquid equilibrium between the atmosphere (including hydrogen) and the magma ocean, to compute the elemental composition of a variety of atmospheres for different quantities of hydrogen. The elemental composition is then used in a steady-state atmospheric model to compute the atmospheric structure and generate synthetic emission spectra. With this method, we confirm previous results showing that silicate atmospheres exhibit a thermal inversion, with notably an emission peak of SiO at 9~μm\mu m. We compare our method to the literature on the inclusion of hydrogen in the atmosphere, and show hydrogen reduces the thermal inversion, because of the formation of H2O which has a strong greenhouse potential. However planets that are significantly irradiated by their host star are sufficiently hot to dissociate H2O and thus also maintain a thermal inversion. The observational implications are twofold: 1) H2O is more likely to be detected in colder atmospheres; 2) Detecting a thermal inversion in hotter atmospheres does not a priori exclude the presence of H (in its atomic form). Due to the impact of H on the overall chemistry and atmospheric structure, and therefore observations, we emphasize the importance of including volatiles in the calculation of the gas-liquid equilibrium. Finally, we provide a criterion to determine potential targets for observation.Comment: 22 pages, 17 figures + 12 figures in appendices. Accepted for publication in Astronomy & Astrophysic

    Spitzer thermal phase curve of WASP-121 b

    Get PDF
    Aims. We analyse unpublished Spitzer observations of the thermal phase-curve of WASP-121 b, a benchmark ultra-hot Jupiter. Methods. We adopted the wavelet pixel-independent component analysis technique to remove challenging instrumental systematic effects in these datasets and we fit them simultaneously with parametric light-curve models. We also performed phase-curve retrievals to better understand the horizontal and vertical thermal structure of the planetary atmosphere. Results. We measured planetary brightness temperatures of \sim2700\,K (dayside) and \sim700--1100\,K (nightside), along with modest peak offsets of 5.9±^{\circ} \pm1.6 (3.6\,μ\mum) and 5.0^{\circ}3.1+3.4_{-3.1}^{+3.4} (4.5\,μ\mum) after mid-eclipse. These results suggest inefficient heat redistribution in the atmosphere of WASP-121 b. The inferred atmospheric Bond albedo and circulation efficiency align well with observed trends for hot giant exoplanets. Interestingly, the measured peak offsets correspond to a westward hot spot, which has rarely been observed. We also report consistent transit depths at 3.6 and 4.5\,μ\mum, along with updated geometric and orbital parameters. Finally, we compared our Spitzer results with previous measurements, including recent JWST observations. Conclusions. We extracted new information on the thermal properties and dynamics of an exoplanet atmosphere from an especially problematic dataset. This study probes the reliability of exoplanet phase-curve parameters obtained from Spitzer observations when state-of-the-art pipelines are adopted to remove the instrumental systematic effects. It demonstrates that Spitzer phase-curve observations provide a useful baseline for comparison with JWST observations, and shows the increase in parameters precision achieved with the newer telescope.Comment: 14 pages, 10 figure

    The effect of a small amount of hydrogen in the atmosphere of ultrahot magma-ocean planets: atmospheric composition and escape

    Full text link
    Here we investigate how small amounts of hydrogen (much smaller than the mass of the exoplanet) above a magma ocean on a rocky exoplanet may modify the atmospheric chemistry and atmospheric escape.We use a chemical model of a magma ocean coupled to a gas equilibrium code. An energy-limited model is used to compute atmospheric escape. The composition of the vapor above a magma ocean is drastically modified by hydrogen, even for very modest amounts of H (106\ll 10^{-6} planetary mass). Hydrogen consumes much of the O2_2(g), which, in turn, promotes the evaporation of metals and metal oxides (SiO, Mg, Na, K, Fe) from the magma ocean. Vast amounts of H2_2O are produced by the same process. At high hydrogen pressures, new hydrogenated species such as SiH4_4 form in the atmosphere. In all cases, H, H2_2, and H2_2O are the dominant nonmetal-bearing volatile species. Sodium is the dominant atmospheric metal-bearing species at T<< 2000K and low H content, whereas Fe is dominant at high H content and low temperature, while SiO predominates at T>3000 K. We find that the atmospheric Mg/Fe, Mg/Si, and Na/Si ratios deviate from those in the underlying planet and from the stellar composition. As such, their determination may constrain the planet's mantle composition and H content. As the presence of hydrogen promotes the evaporation of silicate mantles, it is conceivable that some high-density, irradiated exoplanets may have started life as hydrogen-bearing planets and that part of their silicate mantle evaporated (up to a few 10%10 \% of Si, O, and Fe) and was subsequently lost owing to the reducing role of H. Even very small amounts of H can alter the atmospheric composition and promote the evaporation to space of heavy species derived from the molten silicate mantle of rocky planets.Comment: Accepted for publication in A&

    An independent analysis of the Spitzer/IRAC phase curves of WASP43 b

    Full text link
    We present here a reanalysis of the Spitzer Space Telescope phase curves of the hot Jupiter WASP43 b, using the wavelet pixel-Independent Component Analysis, a blind signal-source separation method. The data analyzed were recorded with the InfraRed Array Camera and consisted of two visits at 3.6 μ\mum, and one visit at 4.5 μ\mum, each visit covering one transit and two eclipse events. To test the robustness of our technique we repeated the analysis on smaller portions of the phase curves, and by employing different instrument ramp models. Our reanalysis presents significant updates of the planetary parameters compared to those reported in the original phase curve study of WASP43 b. In particular, we found (1) higher nightside temperatures, (2) smaller hotspot offsets, (3) a greater consistency (\sim1 σ\sigma) between the two 3.6~μ\mum visits, and (4) a greater similarity with the predictions of the atmospheric circulation models. Our parameter results are consistent within 1 σ\sigma with those reported by a recent reanalysis of the same data sets. For each visit we studied the variation of the retrieved transit parameters as a function of various sets of stellar limb-darkening coefficients, finding significant degeneracy between the limb-darkening models and the analysis output. Furthermore, we performed the analysis of the single transit and eclipse events, and we examined the differences between these results with the ones obtained with the whole phase curve. Finally we provide a formula useful to optimize the trade-off between precision and duration of observations of transiting exoplanets.Comment: published on A

    NEAT: a space born astrometric mission for the detection and characterization of nearby habitable planetary systems

    Full text link
    The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.Comment: 17 pages, in SPIE 2012 symposium in "Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave" SPIE Conference 8442, 1

    Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST

    Full text link
    The TRAPPIST-1 system is remarkable for its seven planets that are similar in size, mass, density, and stellar heating to the rocky planets Venus, Earth, and Mars in our own Solar System (Gillon et al. 2017). All TRAPPIST-1 planets have been observed with the transmission spectroscopy technique using the Hubble or Spitzer Space Telescopes, but no atmospheric features have been detected or strongly constrained (Ducrot et al. 2018; de Wit et al. 2018; Zhang et al. 2018; Garcia et al. 2022). TRAPPIST-1 b is the closest planet to the system's M dwarf star, and it receives 4 times as much irradiation as Earth receives from the Sun. This relatively large amount of stellar heating suggests that its thermal emission may be measurable. Here we present photometric secondary eclipse observations of the Earth-sized TRAPPIST-1 b exoplanet using the F1500W filter of the MIRI instrument on JWST. We detect the secondary eclipse in each of five separate observations with 8.7-sigma confidence when all data are combined. These measurements are most consistent with the re-radiation of the TRAPPIST-1 star's incident flux from only the dayside hemisphere of the planet. The most straightforward interpretation is that there is little or no planetary atmosphere redistributing radiation from the host star and also no detectable atmospheric absorption from carbon dioxide (CO2_2) or other species.Comment: Submitted to Natur
    corecore